
International Journal of Computer Trends and Technology                                                   Volume 73 Issue 5, 125-132, May 2025 

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V73I5P116                                                © 2025 Seventh Sense Research Group®  

 

                               This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article 
 

Solid State Drive: Opportunity, Method, and Apparatus 

to Address Artificial Intelligence Infrastructure Data 

Storage Challenges 

Joydeep Das 

 
Senior Technical Program/Product Manager, Pure Storage Inc. California, USA. 

 
1Corresponding Author : joydeep1977@gmail.com  

 Received: 30 March 2025                    Revised: 02 May 2025                      Accepted: 16 May 2025                        Published:  31 May 2025 

 

Abstract - This document examines the computing and data storage infrastructure requirements necessary to support the ever-

evolving demands of artificial intelligence workloads. It deeply explores AI trends and evaluates whether AI infrastructure 

presents a genuine opportunity for solid-state storage technology to broaden its use cases. This document discusses the history 

of AI, the diverse workload requirements for data storage across various phases of AI infrastructure, and the risks associated 

with current artificial infrastructure demands. Additionally, it highlights the potential for solid-state drives to deliver more 

efficient data storage features for future AI infrastructure deployment.  
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1. Introduction 
The resurgence of Artificial Intelligence, particularly 

generative AI, has resulted in a substantial increase in 

investments, research, and the development of new 

technological advancements in computational power and data 

storage technologies. While investments in computing and 

data storage infrastructure are growing exponentially, not all 

stages of artificial infrastructure require the same or similar 

data storage workloads. This discrepancy means that the type 

of storage capabilities varies across different workflow 

stages. This document explores various data storage 

workloads, capabilities, and future growth opportunities for 

solid-state storage technologies throughout the stages of AI 

infrastructure. It also examines the challenges of AI 

infrastructure in achieving artificial general intelligence with 

the current infrastructure approach.     

2. Artificial Intelligence – Brief History and 

Composition of AI Infrastructure 
2.1. History of AI  

Contrary to popular belief, artificial intelligence began 

in the 1950s with Alan Turing and the Dartmouth workshop. 

The 1960s saw a significant leap with MIT's introduction of 

the first natural language processing capability through 

ELIZA. However, progress stalled between the mid-1960s 

and late 1970s due to a lack of computational power, a period 

referred to as "AI Winter." The 1980s and beyond 

experienced a resurgence in AI with the development of 

neural network technologies, supervised and unsupervised 

learning algorithms, and deep learning architecture. The 

1990s marked the introduction of "Deep Blue," the first AI 

supercomputer launched by IBM. The current generation of 

the artificial technology boom started in the early 2000s with 

the rise of big data analytics, machine learning, and more 

sophisticated deep learning algorithms, leading to the rapid 

growth of AI and the emergence of generative AI starting in 

the 2020s. 

 

2.2. Composition of AI Infrastructure 
 

 
Fig. 1 Composition of High-level AI Infrastructure 

 

 The entire artificial intelligence infrastructure is standing 

on four pillars. 

• Computer processing power - GPU (Parallel Processing) 

and TPU (Deep Learning) 

• Data storage and processing – Cloud/Hybrid/On-prem 

scale-out storage (File, Object) 

• Machine learning frameworks – TensorFlow, PyTorch, 

SageMaker, Azure Machine Learning 

• MLOps platforms - ML Flow, Kube Flow, SageMaker, 

and many others 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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3. Materials and Methods 
AI's entire success and lifecycle depend on the 

availability of clean, reliable, and accessible data. So, data for 

AI is == Oxygen for the human brain/body. Let us break it 

down and see where scalable data storage comes from and 

how it plays a vital role in different stages of AI 

infrastructure. 

 
3.1. Workload 

The workload is broken down into four stages.  

 
3.1.1. Ingestion 

Collection of data into infrastructure 

 
3.1.2. Data Preparation 

Cleaning, preparing data for training 

 
3.1.3. Training 

Using the foundational model (i.e., GPT, Llama, Gemini, 

etc.) 

 
3.1.4. Inference 

Accessing trained data on the data storage and running 

decisions based on training data. 

 
3.2. Availability 

The success of data availability depends on three 

following factors 

 
3.2.1. High Performance 

These deals with how fast data can be stored and 

retrieved to/from data storage media. 

 
3.2.2. Storage Management 

This part determines how efficiently infrastructure 

manages several hundred to thousands of data storage 

hardware nodes in a cluster or multiple clusters and allows 

fault tolerance.  

 
3.2.3. Integration 

Integrating a storage cluster into the compute 

infrastructure is vital to data management and availability. 

 
3.3. Efficiency 

The efficiency of the data storage subsystems depends 

on the following three capabilities of storage technology. 

 
3.3.1. De-Duplication 

Data de-duplication is a data storage algorithm that 

allows a host system to identify the same data in a data stream 

and store only one instance of the data in storage media. This 

allows data storage to minimize the number of writes into the 

storage media and allows the host system to retrieve data 

faster.   

3.3.2. Compression 

Compression is a technology in which the host system 

compresses all the data into a smaller size. This allows the 

host system to transfer a limited amount of data into media, 

which enables the underlying storage subsystem to store and 

retrieve data faster. 

3.3.3. Tiering 

Tired storage is a mechanism where data is stored in 

different storage media (solid state, mechanical hard drives, 

tape drives) based on their access pattern. Typically, data are 

segregated into hot, warm, and cold data, where hot data is 

most frequently accessed and stored in a solid-state drive, 

system memory, nonvolatile RAM, etc.  

Warm data are accessed less frequently and stored in 

solid-state and mechanical hard drives. Cold data are 

primarily for archival purposes and stored in mechanical hard 

drives or tape drives. 

3.3.4. Data Locality 

Data locality typically deals with how fast the host 

computer memory can access the data. Data stored closer to 

system memory is accessed faster than data stored in a far 

location where host systems need additional mechanisms like 

network bandwidth and PCIe expansion hardware to retrieve 

the data. 

3.4. Data Protection 

Data protection is another aspect of the storage 

infrastructure, where storage subsystems must store data for 

future access and legal requirements. These are typically 

divided into three categories. 

3.4.1. Security 

Securing stored data is not only critical for the 

infrastructure to run efficiently but also critical for any 

analyzing engine, like an AI foundational model, to run 

properly to train its decision-making algorithm   

3.4.2. Backup and Restore 

Backup and restore deals with disaster recovery data 

corruption prevention and facilitates data retention 

3.4.3. Retention 

Data retention is governed by local, national, and 

international laws and is critical to data storage management 

systems. 
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Fig. 2 Component of scalable storage Infrastructure 

 

4. Results and Discussion  
4.1. Where AI is Heading – Business Case Study 

Before proceeding further into the data storage 

requirements for AI infrastructure, it is important to 

understand the overall AI investment landscape and why 

solid-state drive manufacturers should invest in the future of 

AI. 

• The global AI market is at $600B and expected to reach 

$1.8T by 2030 

• US market projected to $300B by 2026 

• AI market CAGR is to the tune of 37% since 2023 and 

is expected to remain strong. 

• 48% of businesses across all industries use some form of 

AI today 

• AI software revenue grew 12x since 2018($10B in 2018 

to $126B in 2025) 

• AI infrastructure investment (server and storage) is 

expected to grow 44x ($5B in 2023 to $220B in 2028) 

• 22% annual capacity growth projected between 2025-

2030 

 

 
Fig. 3 IDC forecast for AI infrastructure investment 

4.2. Opportunity for Solid State Drive Technology 

Advancements and rapid progress in artificial 

intelligence presented a unique opportunity for solid-state 

drive technology to address several data storage challenges 

the AI infrastructure is encountering, along with replacing 

slower and more power-consuming mechanical hard disk 

drives. We will break down different stages of data storage 

requirements to run AI infrastructure, but let us look into the 

three big \ pillars where the advancement of solid-state drive 

technology would bring maximum impact. 

4.2.1. Speed and Efficiency 

Improving the speed and efficiency of solid-state drives 

will be needed to make them most relevant to AI storage 

infrastructure. Solid-state drive manufacturers have the 

opportunity to implement this in three broad areas. 

Faster Adoption of PCIe Standard 

Currently, most data storage platforms use PCIe gen-4 or 

gen-5. However, the PCIe gen-6 and beyond standard is 

already available in the industry, and the quicker adoption 

rate of the latest generation of PCIe standard will bring 

significant speed increases to solid-state drives, especially for 

solid-state NVMe drives.   

 

Cost and Capacity Optimization  

Higher capacity, better speed, and reduced cost (through 

QLC NAND adoption) would bring a significant advantage 

to solid-state drives, whereas replacing mechanical hard 

drives with solid-state drives would bring lower TCO and 

lower data centre power budgeting advantage. Disintegrating 

FTL (Flash Translation Layer) from drive firmware to host 

(open channel SSD) or similar technology would allow solid-

state drive manufacturers to eliminate the need for a 

proportionate increase of DRAM (Dynamic random-access 
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memory) capacity as they try to increase the drive capacity 

by packing more NAND die packs into PCBA. Adopting 

standard form factors like different EDSSF standards (E3.S, 

E2.S) would allow for more NAND packs without increasing 

the power requirements of the solid-state drive. A 

combination of QLC NAND, FTL disintegration, and 

adoption of EDSSF standards will allow solid-state drives to 

be more technically and business-attractive for hyperscale AI 

infrastructure providers. 

 

Bringing Compute Power where Data  

Bringing Compute Power where Data is residing 

generally refers to in-situ processing. Before we explore in-

situ processing, it is important to understand how data is 

currently being processed in a computer server environment.  

 

MMIO (Memory Mapped IO) 

When a CPU instruction reads the memory of a device's 

MMIO region, a Memory Read Request Transaction Layer 

Packet (MemRd TLP) is generated and transferred from the 

Root Complex of the host machine to the device. This type of 

TLP informs the receiver that the sender wishes to read a 

certain number of bytes from the receiver. This packet 

expects the device to respond with the contents at the 

requested address as soon as possible. 

 

DMA (Direct Memory Access)  

The first step in enabling DMA (Direct Memory Access) 

is for the device driver to request a memory buffer from the 

OS using an API call. This memory must typically be a 

contiguous block of physical memory, which can be 

challenging for the OS to allocate, especially on systems with 

limited resources. However, modern enhancements like 

Scatter-Gather and IOMMU also allow non-contiguous 

memory. Once allocated, the API returns a logical (often 

physical) address for the device to access via DMA. The 

driver then fills the buffer with the data (e.g., 01 02 03 04 

pattern) intended for transfer to the device.  

 

The second step in the DMA transfer is configuring the 

device with the necessary information to perform the 

transaction. This setup depends on the specific DMA 

interface of the device, which varies and requires referencing 

standards (like NVMe) or working with the hardware 

designer. For example, a simplified device interface uses a 

BAR0 MMIO region, meaning the driver must write 

configuration data to specific memory-mapped registers in 

BAR0. The driver knows these register locations and includes 

them in its code. Now, the OS driver will need to write the 

necessary values into the registers using the mapped memory 

of BAR0 for the device (how it mapped this memory depends 

on the OS). “Target Memory" determines the memory we 

want to copy from the device and maps to a region of memory 

in the device’s on-board RAM, which acts as destination 

memory. OS now creates a “DMA Buffer” that allocates a 

chunk of memory at a memory address and performs as the 

source address. At this point, the driver has configured all the 

registers necessary to perform the transfer. The last step is to 

write a value to the initiate transfer register, which acts as the 

“doorbell register” that begins the transfer. As soon as this 

value is written, the device will drive the DMA transfer and 

execute it independently of the driver or the CPU’s 

involvement. 

 

The third part of DMA deals with the doorbell register. 

The device's DMA Engine handles the entire transfer process. 

It uses configuration data written to BAR0 registers by the 

OS driver to send Transaction Layer Packets (TLPs) over the 

PCIe link and perform the necessary memory transactions. 

 
Fig. 4 Memory map IO process 

 

 
Fig. 5 Direct memory access 

Now that we have a fair knowledge of DMA and MMIO, 

let us focus on the in-situ processing. As we have seen above, 

in both cases of MMIO and DMA, the host operating system 

is entirely dependent on the processing capacity of the 

system’s CPU and/or GPU and total available host memory 

to request data residing on storage media, process the request, 

and derive the resulting outcome. Current AI infrastructure 

uses this traditional architecture for ingesting, data 

preparation, training, and achieving the data. However, the 

inference workload entirely relies on GPU (graphical 

processing unit) or CPU (central processing unit) to run the 

entire inference engine, where GPU/CPU uses various host 

OS and data storage protocols to access and process the data 

from a storage device to arrive at a decision.  
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The existing model does not provide data storage with 

any ability to process inference data unless the data storage 

manufacturer adopts the technical advantage of 

computational storage and combines it with CXL (Compute 

Express Link) hybrid module where the inference workload 

can be processed inside the data storage device with its own 

compute capability and DRAM attached to CXL hybrid 

module.  

Bringing computing power into storage devices would 

allow AI infrastructure to avoid over-reliance on GPU 

clusters or increasing GPU clusters proportionately as the 

more complex foundational model is being developed. In-situ 

computing capability for text, machine learning data, and 

natural language inference engines would provide solid-state 

drive manufacturers access to a vast and critical segment of 

overall artificial intelligence inference engine space for rapid 

opportunity growth.   

 
Fig. 6 Computational storage with CXL Hybrid 

 

4.3. AI Infrastructure Storage Workload and Solid-State 

Drive Capability Matrix 

As discussed under section 3.1, data storage 

requirements for successfully running artificial infrastructure 

can be broken down into six categories. Each category has its 

requirements and serves a specific purpose to achieve the 

outcome of the artificial intelligence model. In this section, 

let us break down the sections and identify how solid-state 

drives have the opportunity to address the storage 

infrastructure needs. 

4.3.1. Data Ingestion 

Data ingestion is the 1st stage of processing, where an 

artificial intelligence engine ingests various data sources 

from different sources where data are stored. In this stage, 

storage needs to have a high capacity with heavy read 

performance and moderate to light write performance 

  

Solid-State Drive Capabilities 

To address this stage of storage requirements, solid-state 

drives need to adopt either E2.S or U.2 form factor, which 

will allow maximizing the storage to be capable of high 

capacity without increasing power budgeting of the drive 

with a combination of QLC NAND to achieve high-capacity 

storage with reasonable power budget. Host-based NVMe, 

NVMe-oF, and 12/24G SAS protocol-supported storage 

would suffice the workload requirement.  

4.3.2. Data Preparation 

Data preparation is the 2nd stage, where ingested data are 

cleaned and prepared in a structured orientation so all 

ingested data are prepared for the 3rd stage, where the AI 

foundational model could train all the data sets. This stage 

typically sees moderate capacity and heavy sequential read 

and write workloads. 

 

Solid-State Drive Capabilities 

To address this stage of storage requirements, solid-state 

drives need to adopt either E2.S or U.2 form factor, which 

will allow maximizing the storage to be capable of moderate 

to high capacity without increasing power budgeting of the 

drive with a combination of QLC NAND to achieve the 

capacity point of the storage with reasonable power budget. 

To support heavy sequential read and write, improving the 

solid-state drive's channel speed and introducing a buffer chip 

into the NAND controller would allow support for heavy read 

and write performance while using QLC NAND on the 

storage device. 

 

4.3.3. Training 

Training is the 3rd stage, where artificial intelligence 

foundation models like Lalma, GPT, Gemini, etc., run 

training on all prepared data sources to analyse different data 

sources and create millions of checkpoints throughout this 

stage. This stage typically sees heavy random read and 

moderate write IO.  

 

Solid-State Drive Capabilities 

To address this stage of storage requirements, solid-state 

drives need to adopt either E2.S or U.2 form factor, which 

will allow storage to be capable of moderate capacity without 

increasing power budgeting of the drive and combining TLC 

NAND to achieve a capacity point of the storage with speedy 

NAND type. A solid-state drive with hybrid 

NAND(SLC+QLC) would also bring a similar performance 

envelope while decreasing the cost of the storage drive due to 

the lower cost of QLC NAND. Adopting TLC NAND with 

an interface chip would allow improved performance to 

support heavy random read and moderate write, which would 

be necessary for the training workload.  

 

4.3.4. Checkpointing 

Checkpoint or data checkpointing-based training data is 

the 4th stage of data infrastructure where AI foundational 

models run training on the prepared data and, for every 

variance, create a checkpoint of the data set. The volume of 

the entire checkpoint for a moderately complex may run into 

a few million checkpoints being created for later use during 

inference. This stage typically sees high random read and 

high sequential write. 

 

Solid-State Drive Capabilities 

To address this stage of storage requirements, solid-state 

drives need to adopt either E2.S or U.2 form factor, which 
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will allow storage to be capable of moderate capacity without 

increasing power budgeting of the drive and combining TLC 

NAND to achieve a capacity point of the storage with high-

speed NAND type. To support heavy  Adopting TLC NAND 

with an interface chip with high read and random write would 

improve performance, which would be necessary for 

checkpoint workload.

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 AI Infrastructure storage workloads and SSD capability matrix 
 

4.3.5. Inference 

The Inference or decision stage is the 5th stage in the 

artificial intelligence data infrastructure, where inference 

engines typically use GPU clusters to access data storage 

across various storage nodes and run inference and decision-

making processes based on the checkpoint's foundational 

models created during 4th stage. Data storage typically sees 

heavy random read and moderate write IO in this stage. 

Solid-State Drive Capabilities 

To address this stage of storage requirements, solid-state 

drives need to adopt the E2.S form factor, which will allow 

storage to be capable of moderate capacity without increasing 

power budgeting of the drive and combining TLC NAND to 

achieve a capacity point of the storage with high-speed 

NAND type. However, the introduction of computational 

storage with the CXL hybrid module (discussed under section 

4.2.1.3 for inference workload processing will offload 

compute load into storage where the storage device will be 

able to handle the majority of the inference directly in the 

storage device to improve significantly the performance 

while reducing the dependency on GPU for inference 

workload.  

4.3.6. Archive 

The archive stage is the 6th and last of the artificial 

intelligence data infrastructure where data collected from 

stage 1 to inference run on stage 5 is stored in long team 

storage where the host would be able to run workloads like 

big data analytics and machine learning algorithm to fine-

tune future inference as well as creating synthetic data sets 

for various simulated decision situations. Data storage 

typically sees heavy reads and moderate to low write IO in 

this stage.  

Solid-State Drive Capabilities 

To address this stage of storage requirements, solid-state 

drives need to adopt either E2.S or U.2 form factor, which 

will allow maximizing the storage capacity without 

increasing the power budgeting of the drive with a 

combination of QLC NAND to achieve the highest capacity 

point of the storage.  

However, mechanical hard disks and tape drives 

dominate this data storage segment. To get into this segment 

of data storage, solid-state drives not only need to offer the 

highest capacity possible but also move FTL (Flash 

Translation Layer) out of drive firmware to host or 

disintegrate FTL up to a certain extent (i.e., open channel 

SSD) to reduce the dependency of having additional DRAM 

as the capacity of the storage drive increases. Also, extending 

the shelf life of the solid-state drive up to 7-10 years would 

be required to gain acceptance into data archive workload 

space.  
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5. Conclusion 
Recent advancements in artificial intelligence and the 

need for more and more infrastructure to fine-tune and 

advance artificial intelligence foundation models’ 

development provide a unique opportunity for drive 

technologies to become mainstream into the entire spectrum 

of AI data storage infrastructure. However, it is critical to 

assess the pros and cons we have in the AI market to derive a 

conclusion. Let us do a deep dive and analyze the data. 

Pros:  

• Unlike conventional belief, the concept and 

advancement of artificial intelligence started more than 

70 years ago. Less computing power prevented the 

advancement of artificial Intelligence, but GPU changed 

the dynamics drastically. 

• There is possibly no company that exists today that does 

not have an AI strategy (small, big or bold) in place. 

• Ever-improving foundational models push the boundary 

of AI capability daily, requiring ever-increasing 

performant infrastructure and thoughts beyond 

convention.  

• SSD market to support AI Infrastructure is growing at 

20% CAGR and is expected to remain strong 

• The next 5-10 years of revenue growth will come to the 

companies working on 

1. AI Infrastructure 

2. Foundational Model 

3. Wrapper Agents 

 

• Adopting newer technologies and promoting/developing 

smarter, less powerful, hungry, and larger SSD storage 

has the potential to become mainstream in all spectrums 

of the AI Infra and storage landscape. 

Cons: 

• The unavailability of alternate compute architecture and 

over-reliance on GPU would lead to an unsustainable 

power requirement to advance AI development and has 

the potential to bring back “AI Winter” again unless 

technological advancement progresses enough with 

quantum computing and neural processing units. 

• The lack of usable use cases and slow ROI for enterprises 

to monetize AI investment potentially forces enterprises 

to rethink their AI investment strategy 

• Potentially low ROI during the initial adoption phase of 

new SSD technology adoption due to introducing new 

features and technology standards without a proven 

enterprise success story. So, adoption and advancement 

in newer solid-state drive technology requires a multi-

year view and leadership advocacy to see long-term 

benefits. 

• The rapid advancement of synthetic DNA data storage in 

the last 5 years might pose a real challenge for current 

mainstream storage technologies due to DNA storage 

technologies' ability to store data over 10000 years and 

extremely low latency profile. However, this risk is not 

immediate since DNA storage is still under an 

experimental model and has not yet been implemented at 

the enterprise level.  
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